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Unit 5- Pipelining and Unfolding 
 

PIPELINING 
▪ Common parallel pattern that mimics a traditional manufacturing assembly line. 

 
Laundry analogy explanation: 
“A useful method of demonstrating this is 
the laundry analogy. Let's say that there 
are four loads of dirty laundry that need to 
be washed, dried, and folded. We could put 
the first load in the washer for 30 minutes, 
dry it for 40 minutes, and then take 20 
minutes to fold the clothes. Then pick up 
the second load and wash, dry, and fold, 
and repeat for the third and fourth loads. 
Supposing we started at 6 PM and worked 
as efficiently as possible, we would still be 
doing laundry until midnight. 
However, a smarter approach to the 
problem would be to put the second load 
of dirty laundry into the washer after the 
first was already clean and whirling happily 
in the dryer. Then, while the first load was 
being folded, the second load would dry, 
and a third load could be added to the 
pipeline of laundry. Using this method, the 
laundry would be finished by 9:30.” 

 
 
 
 

 
 
 
 
 
 
 

PIPELINE MODEL 
▪ Pipeline: linear sequence of stages. Data flows through the pipeline, from the first stage to the last stage. 

✓ Stages of the pipeline can often be generated by using functional decomposition of tasks in an application.  
✓ Data is partitioned into pieces (also called items or data units). 
✓ Each stage performs a transformation on the data (this transformation is called a task). 
✓ A stage’s transformation of items may be one-to-one or more complicated. 
✓ Stages in a pipeline can be balanced (uniform processing time) or non-balanced (non-uniform). 
✓ Type of pipeline stages: 

 Serial stage: It processes one item at a time, though different stages can run in parallel. 
 Parallel stage: It processes multiple items at once and can deliver output items out of order. 

 
▪ Pipelines can be classified depending on the type of stages they contain: 

✓ Serial Pipeline: Pipeline with only serial stages. The throughput of the pipeline is limited to the throughput of the slowest 
serial stage because every item must pass through that stage at a time. 

✓ Parallel Pipeline: This pipeline includes parallel stages (it might include serial stages as well) to make it more scalable. 
 
▪ Pipelines are found in: 

✓ Instruction pipelines: The processor breaks the execution of an instruction into stages. Results of one stage are fed onto 
the next stage. This allows multiple instructions to be in different stages of processing at the same time. 

✓ Hardware pipelines: A digital circuit is divided into stages, results of one stage are fed into the inputs of the next stage. 
✓ Software pipelines: A software routine can be thought of as a sequence of computing processes with the output stream 

of one process being fed as the input stream of the next one. 

  

(a)

(b)

Figure 1. Pipeline explanation. (a) normal sequential operation. (b) pipeline approach.  

Source: https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html 

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/pipelining/index.html
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SERIAL PIPELINE 
▪ Fig. 2 shows a pipeline with 4 stages. Data is fed to the pipeline in terms of data units (or items). For example, for data unit 

‘a’, Stage 1 applies a transform like S1(a), while Stage 2 applies a transform like S2(S1(a)), and so on. We call this a serial 
pipeline, where each stage can only process one data unit at a time. 

 
 
 
 
 
 
 
Pipeline with Uniform Stages 

▪ Here, each stage has a uniform processing time of T cycles. Fig. 3 depicts an example with 5 data units and 4 stages. 

✓ Sequential pipeline execution: Naïve approach depicted in Fig. 3(a). We feed the first data unit ‘a’ and wait until we get 
the result from Stage 4. Then, we feed data unit ‘b’ and wait until we get the result from Stage 4. This repeats until we 
feed the last data unit (‘e’) and get the associated result from Stage 4. Total computation time: (5 × 4) × 𝑇 cycles. 

✓ Concurrent pipeline execution: Depicted in Fig. 3(b). If we continuously feed a new data unit right after Stage 1 has 
processed a previous data unit, we can expose parallelism (all stages busy after a little while). Total computation time: 
(4 + 5 − 1) × 𝑇 = 8𝑇 cycles. This large reduction in computation time is an advantageous feature of pipelining. 

 
  
 
 
 
 
 
 
 
 
 

▪ For a pipeline with 𝑞 stages (each with a processing time T) that is continuously fed 𝑛 data units, we have that:  

✓ Latency (total time for one item to go through the whole system): 𝑞 × 𝑇. This is also called initial latency (number of 

cycles it takes to process the first data unit). 
✓ Total Processing Time: (𝑞 + 𝑛 − 1) × 𝑇 cycles. 

✓ Throughput (rate at which items are processed, in terms of data units per cycle): 
𝑛

(𝑞+𝑛−1)×𝑇
=

1

(
𝑞−1

𝑛
+1)×𝑇

 

 In practice, 𝑛 can be very large and thus the throughput is given by: 
1

(
𝑞−1

𝑛
+1)×𝑇

|
𝑛→∞

=
1

𝑇
 data units per cycle. This can 

be interpreted as the rate at which new items are processed after the first one (i.e., after the initial latency). 
 
Pipeline with Non-Uniform Stages 
▪ When the processing times of the stages are non-uniform, the slowest stage limits the throughput. Unlike the case with 

uniform stages, here we cannot guarantee that all stages will be necessarily operating at the same time. 
✓ Fig. 4(a) depicts the case where Stage 3 takes 1.5𝑇 cycles, while the other stages take 𝑇 cycles each. The latency is 4.5𝑇 

cycles. The pipeline must wait until Stage 3 computes its result before feeding a new data to Stage 3. Thus, the processing 
time is given by (4.5 − 1) × 𝑇 + (𝑛 − 1) × 1.5𝑇 +  𝑇 =  4.5 × 𝑇 +  (𝑛 − 1) × 1.5𝑇. The throughput is given by: 

𝑛

(4,5+(𝑛−1)×1.5)×𝑇
=

1

(
4.5−1.5

𝑛
+1.5)×𝑇

. When 𝑛 → ∞, the throughput results in 
1

1.5𝑇
. 

✓ Fig. 4(b) depicts the case where Stage 2 takes 2𝑇 cycles, while the other stages take 𝑇 cycles each. The latency is 5𝑇 

cycles. The pipeline must wait until Stage 2 computes its result before feeding a new data to Stage 2. Thus, the total 
processing time is given by (5 − 2) × 𝑇 + (𝑛 − 1) × 2𝑇 +  2𝑇 =  5 × 𝑇 +  (𝑛 − 1) × 2𝑇. The throughput is given by: 

𝑛

(5+(𝑛−1)×2)×𝑇
=

1

(
5−2

𝑛
+2)×𝑇

. When 𝑛 → ∞, the throughput results in 
1

2𝑇
. 

 
 
 
 
 
 
 
 
 

Stage 1 Stage 2 Stage 3 Stage 4Data Units Result per Unit

Task 1 Task 2 Task 3 Task 4
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(a) (b)

T

Figure 2. 4-stage serial pipeline. Each task is performed by a separate stage. The example shows 5 data units that go through 

the pipeline along with the final result per data unit. 

Figure 3. (a) Sequential pipeline execution for 5 data units: it takes 20T cycles. (b) Concurrent parallel execution for 5 data 

unit: it takes 8T cycles. Note how all stages are busy after some initial delay. 

Figure 4. Pipelining for non-uniform stages. (a) Largest stage takes 1.5T cycles. Here, all the stages are busy at one point. (b) 

Largest stage takes 2T cycles. Here, at most only 3 stages are busy at a time. 

(b)(a)

T 1.5T 2T T
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▪ In general (for 𝑞 stages and 𝑛 data items), the total processing time is given by 𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇 cycles, where 𝑓 × 𝑇 
is the processing time of the largest stage (𝑓 > 1) and 𝐿 × 𝑇 is the latency. Note that this formula holds even if the other 

stages are unbalanced. Also, a balanced pipeline (𝑇 cycles per stage) is a special case where 𝐿 = 𝑞 and 𝑓 = 1. 

✓ Throughput: 
𝑛

(𝐿+(𝑛−1)×𝑓)×𝑇
=

1

(
𝐿−𝑓

𝑛
+𝑓)×𝑇

 data units per cycle. When 𝑛 → ∞, the throughput results in 
1

𝑓𝑇
, and as such it is 

determined by the slowest stage. 
 

TABLE I. SERIAL PIPELINE: PROCESSING TIMES. 𝑛: NUMBER OF ITEMS. 

Serial Pipeline Processing Time (cycles) Throughput (data units per cycle) Comments 

Uniform (each stage 

takes T cycles) 
(𝑞 + 𝑛 − 1) × 𝑇 

𝑛

(𝑞 + 𝑛 − 1) × 𝑇
=

1

𝑇
, 𝑖𝑓 𝑛 → ∞ 𝑞: Number of pipeline stages 

Non-Uniform (at least 

one stage takes more 

than T cycles) 

𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇 
𝑛

(𝐿 + (𝑛 − 1) × 𝑓) × 𝑇
=

1

𝑓𝑇
, 𝑖𝑓 𝑛 → ∞ 

𝐿: factor of the pipeline latency (𝐿 × 𝑇) 

𝑓: factor of the largest stage (𝑓 > 1) 

 

APPLICATION TO HARDWARE WITH SEQUENTIAL (ITERATIVE) STAGES 
▪ If your hardware design can be partitioned into a linear sequence of stages, we can apply pipelining in order to expose 

parallelism when feeding a stream of data. Pipelining allows us to optimize the rate at which we can feed new data. 
▪ The following applies to iterative stages. In an iterative stage, if it takes 𝑃 cycles to process an input sample, we have to 

wait 𝑃 cycles before we can feed a new input sample to that stage. 

 
▪ Fig. 5(a) depicts a hardware design with 3 stages. Each stage includes an ‘s’ (start signal) and ‘v’ (done signal). When ‘s’ is 

asserted, we feed a data sample, and when ‘v’ is asserted, the associated result is available. 
✓ Stage 1: It takes 𝑝1 = 3 cycles to process data. 

✓ Stage 2: It takes 𝑝2 = 4 cycles to process data. 
✓ Stage 3: It takes 𝑝3 = 4 cycles to process data. 

▪ Fig. 5(b) depicts a theoretical depiction of pipelining for the 3-stage circuit (assume 𝑇 = 1). 

 
 
 
 
 
 
 
 
 
 
 
▪ As per the pipelining formulas, we can issue a new sample every 𝐹 = max(𝑝1, 𝑝2, 𝑝3) = max(3,4,4) = 4 cycles. This is shown 

in Fig. 6. Note how each sample is processed by the pipeline. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
▪ Total processing time for 𝑛 samples. Here, 𝑇 is set to ‘1’ (e.g.: 𝐿 × 𝑇 =  10 cycles). 

✓ Pipelined approach: 𝐿 × 𝑇 + (𝑛 − 1) × 𝑓 × 𝑇 = (4 + 3 + 3) + (𝑛 − 1) × 4. 

✓ Non-pipelined approach: 𝐿 × 𝑇 × 𝑛 = 10 × 𝑛 

 
▪ Ideally, we would like to be able to feed a new data sample every clock cycle (and retrieve output data at every clock cycle 

as well). These circuits are known as ‘fully-pipelined’ (see next section).  

Figure 5. (a) Hardware design depicted as (iterative) stages along with their processing time. (b) Pipelining depiction: we can 

feed data samples every 4 cycles (at least) 

clock

s0

v0

s1

v1

p2 = 4

s2

v2

p3 = 4p1 = 3

First Sample

Figure 6. Pipelined Approach. We can feed a new data sample every 4 cycles 
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PIPELINING/UNFOLDING OF ITERATIVE ARCHITECTURES 
▪ Here, we provide examples of how to convert iterative architectures/algorithms into fully-pipelined architectures. These 

architectures are such that we can feed a new data sample at every clock cycle. 
 

MULTI-OPERAND ADDITION 
▪ Addition of 𝑁 𝑛 −bit numbers (signed, unsigned) 

 
ITERATIVE DESIGN (FOLDED): ACCUMULATOR 
▪ Even if we have all the data (𝑁 numbers) ready, we can only 

feed one number at a time.  
▪ We sign-extend (or zero-extend) the input 𝐷 depending on 

whether we are adding signed or unsigned numbers. 
 
▪ This architecture takes 𝑁 cycles to add 𝑁 numbers. It must wait 

one more cycle before loading the next batch of numbers. 
▪ Computation time for 𝑇 𝑁-number groups: 𝑇 × (𝑁 + 1) cycles. 

 
▪ Note how the required number of bits grow to 𝑛 + ⌈log2 𝑁⌉. 
 
 
UNFOLDED ACCUMULATOR: 
▪ Unfolding: for each iteration, the architecture that computes that iteration is replicated. To add 𝑁 numbers, we need to 

apply 𝑁 − 1 additions. For example, for 𝑁 = 7, the unfolded version of the iterative architecture is shown below. It is called 

‘Direct Unfolding’ architecture. 
▪ Note that we can optimize this ‘Direct Unfolding’ architecture by using an Adder Tree. 
 
▪ Adder Tree: Structure that optimizes the number of two-input adders. 

✓ Adder Levels: This is given by ⌈log2 𝑁⌉. A level is a set of adders whose inputs have the same bit-width.  

✓ Number of output bits: 𝑛 + ⌈log2 𝑁⌉. 
✓ If 𝑁 is not a power of 2, some adder levels will have data inputs that are passed (sign-extended or zero-extended) to 

the next adder level. Within an adder, we increase the number of bits depending on the representation: 
 Signed numbers: at every level, we need to sign extend the operands, in order to get the proper result. 

 Unsigned numbers: you can zero-extend the operands, or just use the carry out as the MSB of the result. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
▪ This unfolded architecture can process a group of 𝑁 numbers in one clock cycle at the expense of a large increase in 

hardware resources. Computation time for 𝑇 groups of 𝑁 numbers: 𝑇 cycles. 

▪ Note that this circuit assumes that you can feed a group of 𝑁 numbers in one clock cycle. 

 
▪ Even though data can be computed in clock cycle, the propagation delay is very large, and thus the clock cycle period will 

be large. To increase the frequency of operation, we need to apply pipelining so that we can partition the circuit into stages 
with a uniform processing time (one clock cycle). 
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PIPELINED DESIGN (UNFOLDED): ADDER TREE 
▪ Pipelining: Registers are inserted in between the architecture in order to increase the frequency of operation. 

✓ The number of register levels we include depends on the architecture. 
✓ Initial Latency: Output data will be ready in a number of cycles (= register levels) after input data is loaded. 
✓ We can load new input data at every new cycle. After the initial latency, we get output results every clock cycle. Over 

time, the initial latency will become negligible. 
 
▪ Adder Tree: ⌈log2 𝑁⌉ register levels (or 

I/O delay). This is the same as the Initial 
latency. 

▪ Note: For 𝑁 = 7, we do not omit a register 

on the second register level when there is 
no adder. This is called a synchronization 
register and it makes sure that data arrives 
at the correct time. 

▪ Computation time for 𝑇 groups of 𝑁 

numbers: 𝑇 + ⌈log2 𝑁⌉ cycles. 

 
 
 
 
 
Timing Comparison 
▪ An enable and a valid bit are added to the pipelined design. 

This is done via a  ⌈log2 𝑁⌉-bit shift register. 
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Figure 10. Processing Time comparison between a folded design and a pipelined design. 
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MULTIPLICATION 
 

UNSIGNED MULTIPLICATION 
▪ We already know the iterative version of the multiplier. Here, we show how to implement the multiplication using an array 

multiplier. In this implementation, two rows are added up at each stage. 
▪ We start from the iterative version (Unit 2) of the multiplier. As in the case of the Accumulator, if we directly unfold the 

iterative multiplier, the resulting architecture will not be optimal. Here we show an optimized architecture. 
 
▪ Unfolded version (purely combinational): Here, we have a different hardware for every summation of two rows. 
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Figure 11. Multiplier: Unfolded (combinational) architecture. 
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▪ Pipelined version: To increase frequency of operation, we place registers at every stage. Here, we are also including an 
enable input and a valid output. 

▪ Note the synchronization registers included to make sure that data arrives at the right time. This applied to the input bits 
b3-b0 and output bits p2, p1, p0 and p7.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
SIGNED MULTIPLICATION 
▪ We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage. 
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Figure 12. Multiplier: Fully-pipelined architecture. 
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DIVISION 
 

▪ This is based on the iterative algorithm for dividers presented in Unit 2. The architecture was unfolded and then optimized. 
 
RESTORING ARRAY DIVIDER FOR UNSIGNED INTEGERS 
 
▪ 𝐴,𝐵: positive integers in unsigned representation. 𝐴 = 𝑎𝑁−1𝑎𝑁−2 …𝑎0 with 𝑁 bits, and 𝐵 = 𝑏𝑀−1𝑏𝑀−2 …𝑏0 with 𝑀 bits, with 

the condition that 𝑁 ≥ 𝑀. 𝑄 = 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡, 𝑅 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑒. 𝐴 = 𝐵 × 𝑄 + 𝑅. 

 
In this parallel implementation, the result of every stage is called 
the remainder 𝑅𝑖.  

 
The figure depicts the parallel algorithm with 𝑁 stages. For each 
stage 𝑖, 𝑖 = 0,… , 𝑁 − 1, we have: 

𝑅𝑖: output of stage 𝑖. Remainder after every stage.  

𝑌𝑖: input of stage 𝑖. It holds the minuend.  

 
For the next stage, we append the next bit of 𝐴 to  𝑅𝑖. This becomes 

𝑌𝑖+1 (the minuend): 
𝑌𝑖+1 = 𝑅𝑖&𝑎𝑁−1−𝑖 , 𝑖 = 0,… , 𝑁 − 1 

 
At each stage 𝑖, the subtraction 𝑌𝑖 − 𝐵 is performed. If 𝑌𝑖 ≥ 𝐵 then 
𝑅𝑖 = 𝑌𝑖 − 𝐵. If 𝑌𝑖 < 𝐵, then 𝑅𝑖 = 𝑌𝑖. 

 

Stage 𝑌𝑖 Computation of 𝑅𝑖 
# of 

𝑅𝑖 bits 

0 𝑌0 = 𝑎𝑁−1 
𝑅0 = 𝑌0 − 𝐵, 𝑖𝑓 𝑌0 ≥ 𝐵 
𝑅0 = 𝑌0, 𝑖𝑓 𝑌0 < 𝐵 

1 

1 𝑌1 = 𝑅0&𝑎𝑁−2 
𝑅1 = 𝑌1 − 𝐵, 𝑖𝑓 𝑌1 ≥ 𝐵 
𝑅1 = 𝑌1, 𝑖𝑓 𝑌1 < 𝐵 

2 

2 𝑌2 = 𝑅1&𝑎𝑁−3 
𝑅2 = 𝑌2 − 𝐵, 𝑖𝑓 𝑌2 ≥ 𝐵 
𝑅2 = 𝑌2, 𝑖𝑓 𝑌2 < 𝐵 

3 

… … … … 

M-1 𝑌𝑀−1 = 𝑅𝑀−2&𝑎𝑀−𝑁 
𝑅𝑀−1 = 𝑌𝑀−1 − 𝐵, 𝑖𝑓 𝑌𝑀−1 ≥ 𝐵 
𝑅𝑀−1 = 𝑌𝑀−1, 𝑖𝑓 𝑌𝑀−1 < 𝐵 

M 

 
Since 𝐵 has 𝑀 bits, the operation 𝑌𝑖 − 𝐵 requires 𝑀 bits for both 

operands. To maintain consistency, we let 𝑌𝑖 be represented with 𝑀 

bits. 
 
𝑅𝑖: output of each stage. For the first 𝑀 stages, 𝑅𝑖 requires 𝑖 + 1 
bits. However, for consistency and clarity’s sake, since 𝑅𝑖 might be 

the result of a subtraction, we let 𝑅𝑖 use 𝑀 bits.  

 
For stages 0 𝑡𝑜 𝑀 − 1: 

𝑅𝑖 is always transferred onto the next stage. Note that we transfer 

𝑅𝑖 with 𝑀 − 1 least significant bits. There is no loss of accuracy here 

since 𝑅𝑖 at most requires 𝑀 − 1 bits for stage 𝑀 − 2. We need 𝑅𝑖 

with M-1 bits since 𝑌𝑖+1 uses 𝑀 bits. 

 
Stages 𝑀 𝑡𝑜 𝑁 − 1: 

Starting from stage 𝑀 − 1, 𝑅𝑖 requires 𝑀 bits. We also know that 

the remainder requires at most 𝑀 bits (maximum value is 2𝑀 − 2).  

So, starting from stage M-1 we need to transfer 𝑀 bits. 
As 𝑌𝑖+1 now requires 𝑀 + 1 bits, we need 𝑀 + 1 units starting from stage 𝑀. 

 
▪ To implement the operation 𝑌𝑖 − 𝐵 we use a subtractor. When 𝑌𝑖 ≥ 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 1, and when 𝑌𝑖 < 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 0.  This 𝑐𝑜𝑢𝑡𝑖 

becomes a bit of the quotient:  𝑄𝑖 = 𝑐𝑜𝑢𝑡𝑁−1−𝑖. This quotient Q requires N bits at most.  

▪ Also, the final remainder is the result of the last stage. The maximum theoretical value of the remainder is 2𝑀 − 2, thus the 

remainder 𝑅 requires 𝑀 bits. 𝑅 = 𝑅𝑁−1. 
▪ Also, note that we should avoid a division by 0. If 𝐵 = 0, then, in our circuit: 𝑄 = 2𝑁 − 1 and R = 𝑎𝑀−1𝑎𝑀−2 …𝑎0. 

  

Figure 13. Divider: Parallel implementation algorithm 
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COMBINATIONAL ARRAY DIVIDER (UNFOLDED) 
 
The figure shows the hardware of this array divider for N=8, M=4. Note that the first 𝑀 = 4 stages only require 4 units, while 

the next stages require 5 units. This is fully combinatorial implementation. 
▪ Each level computes 𝑅𝑖. It first computes 𝑌𝑖 − 𝐵. When 𝑌𝑖 ≥ 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 1, and when 𝑌𝑖 < 𝐵 → 𝑐𝑜𝑢𝑡𝑖 = 0. This 𝑐𝑜𝑢𝑡𝑖 is used 

to determine whether the next 𝑅𝑖 is 𝑌𝑖 − 𝐵 or 𝑌𝑖. 
▪ Each Processing Unit (PU) is used to process 𝑌𝑖 − 𝐵 one bit at a time, and to let a particular bit of either 𝑌𝑖 − 𝐵 or 𝑌𝑖 be 

transferred on to the next stage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FULLY PIPELINED ARRAY DIVIDER 
 
The figure shows the hardware core of the fully pipelined array divider with its inputs, outputs, and parameters.  
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Figure 14. Fully Combinatorial Array Divider architecture for N=8, M=4 

 

Figure 15. Fully pipelined IP core for the array divider 
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The figure shows the internal architecture of this pipelined array divider for N=8, M=4. Note that the first M=4 stages only 
require 4 units, while the next stages require 5 units. Note that the enable input ‘E’ is only an input to the shift register on the 
left, which is used to generate the valid output 𝑣. This way, valid outputs are readily signaled. If E=’1’, the output result is 

computed in N cycles (and v=’1’ after N cycles). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
SIGNED DIVISION 
▪ We follow the same idea as in the iterative case. We need to add one pre-processing stage and one post-processing stage. 
 

  

Figure 16. Fully Pipelined Array Divider architecture for N=8, M=4 
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SQUARE ROOT 
▪ We use the optimized algorithm of Unit 4. 
▪ Unfolding: every single iteration is implemented by a particular hardware. By observing the algorithm, we need 𝑛 stages 

with 𝑛 adder/subtractors.  

▪ As in the case of the iterative circuitry, there is a reduction in this case as well for the first iteration: 
𝑅′𝑛−1 = 𝑑2𝑛−1𝑑2𝑛−2 − 01 

𝑞𝑛−1 = {
1, 𝑖𝑓𝑅′𝑛−1 ≥ 0

0, 𝑖𝑓𝑅′𝑛−1 < 0
 

 
 → 𝑞𝑛−1 = 𝑑2𝑛−1𝑑2𝑛−2, 𝑏 = 𝑑2𝑛−1𝑑2𝑛−2

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑎 = 𝑑2𝑛−2
̅̅ ̅̅ ̅̅ ̅̅  

 
𝑅′𝑛−1 requires 𝑛 − (𝑛 − 1) + 1 = 2 bits, thus we only use 

the last 2 LSBs of the result. 
 
Also, since these are few logic gates on the first iteration, 
we can embed the first and second stages into one stage. 
Finally, we include registers levels at every stage. We 
have 𝑛 − 1 register stages.  

 
In addition, you can always add a shift register for E and 
v. 
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Figure 17. Fully Pipelined Architecture for Square Root Computation 
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CORDIC 
▪ Here, we just need to implement every iteration as a different hardware architecture. The figure shows the circular CORDIC 

for fixed point arithmetic. 
▪ Unfolding: This is a very straightforward operation: we just repeat each iteration of the iterative CORDIC architecture. No 

optimization is applied. The output of each iteration becomes the input of the next iteration. 
▪ Pipelining: It consists of adding registers between stages. The initial latency is 𝑁 cycles, where 𝑁 is the number of CORDIC 

iterations. We can feed new data (𝑥0, 𝑦0, 𝑧0, mode) at every clock cycle. 𝑁 cycles after the first operation, this circuit can 

produce output data (𝑥𝑁 , 𝑦𝑁, 𝑧𝑁) every clock cycle.  
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Figure 18. Fully Pipelined Architecture for Circular CORDIC Computation 
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